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1. Introduction 

Computational fluid dynamics (CFD) has been shown to provide accurate predictions of the 
pitch-damping coefficients for a variety of projectile and missile geometries (1–6).  In addition to 
the global coefficients for the complete configuration, the CFD results allow important details, 
such as the distribution of the force and moment along the body, to be examined.  These details 
would be difficult to investigate experimentally.  For some preliminary design and parametric 
studies, it may be convenient to have a simpler way of estimating the pitch-damping 
characteristics of flight bodies.  Such models do currently exist (7–9), although they are currently 
being reexamined and updated (10, 11), in part, due to the recent availability of computationally 
derived pitch-damping data.  This report documents the development of an engineering model 
for predicting the pitch-damping characteristics of axisymmetric flight bodies in supersonic flow.  
The engineering model is based, in part, on slender body theory and some of the relationships 
between the aerodynamic coefficients that can be derived from it.  

There are two primary pitch-damping force coefficients, qNC and α&NC , that account for forces 

produced by the angular rate of the body q and angular rate α& associated with the angle of 
attack.  For rectilinear flight, the angular rate of the body and the angular rate due to angle of 
attack are closely related.  In this case, the aerodynamic effect represented by the individual 
coefficients qNC and α&NC can be combined and treated as a single coefficient, the pitch-damping 

force coefficient sum, α&NqN CC + .  Despite this simplification, the individual pitch-damping 

coefficients may still be required for some aerodynamic analyses.  It is therefore desirable to 
develop a method of predicting the individual pitch-damping coefficients from which the pitch-
damping coefficient sum can be easily computed.  In most cases, the pitch-damping moment 
coefficients, qmC , α&mC , and qmC  + α&mC  are of primary interest because of their importance to 

the aerodynamic damping.  However, these coefficients are easily obtained once the 
corresponding force coefficients are determined. 

By applying slender body theory, it becomes apparent that the pitch-damping force coefficient 
due to rate of angle of attack change, α&NC , is of primary importance because of its relationship 

to the normal force and all the other damping coefficients.  Correlation functions that are 
evaluated from CFD computation are introduced into the slender body theory equation for α&NC  

to form the basis for an engineering model to estimate the pitch-damping coefficients for 
axisymmetric bodies.  The model is then applied to a variety of axisymmetric body geometries 
over a range of supersonic Mach numbers, and comparisons are made with CFD predictions for 
the same body geometries to evaluate the effectiveness of the correlation functions.
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An extensive database of pitch-damping coefficient data for a variety of axisymmetric body 
geometries and flight conditions was generated using results from a recently developed 
computational procedure for predicting the static and pitch-damping coefficients (1–3).  The 
technique makes use of a novel rotating coordinate frame to compute the aerodynamics 
associated with the various pitch-damping coefficients.  The technique has been embodied into 
several codes including a Parabolized Navier-Stokes (PNS) technique (1–3) and time-marching 
Navier-Stokes approach (F3D) (4).  The original studies focused on the Army-Navy Spinner 
Rocket (ANSR) shown in Figure 1.  High quality aerodynamic range data were used to validate 
the computational procedure.  For the current study, the database has been expanded to include 
additional Mach numbers (Mach 1.8–4.5) and longer body lengths (up to length-to-diameter ratio 
[L/D] = 20) as well as a variety of nose geometries.  An important feature of the computational 
data is that the distribution of the aerodynamic forces and moments along the body due to both 
the static and dynamic aerodynamic coefficients is obtained.  It is unlikely that this type of data 
could be obtained from experimental means. 

 

Figure 1.  Schematic of ANSR rocket configuration. 

1.1 Slender Body Theory Relationships 

The slender body theory suggested by Munk (12) and applied by Wood and Murphy (13) among 
others, allows for simple, though approximate, evaluation of both the static and dynamic 
aerodynamic coefficients needed to characterize the pitch-damping characteristics of a flight 
body.  The slender body theory allows the forces and moment to be computed from the local 
body diameter, D̂ .  For an axisymmetric body, the slender body theory results for the static and 
dynamic force and moment coefficients can be summarized in the following equations:
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Static Coefficients 

Normal force coefficient slope: 

 ∫ ==
x

0

2
2

N D̂2xd
xd
D̂2dC α . (1) 

Moment coefficient slope: 

 ∫ −=
x

0

2

cgm xd
xd
D̂2d)xx(C α . (2) 

Damping Force Coefficients 

Force coefficient slope due to angular rate associated with angle of attack: 

 ∫=
x

0

2
N xdD̂2C α& . (3) 

Force coefficient slope due to transverse angular velocity: 

 [ ] )xx(D̂2xdD̂2)xx(
xd
dC cg

2
x

0

2
cgqN −−=−−= ∫ . (4) 

Damping Moment Coefficients 

Moment coefficient slope due to angular rate associated with angle of attack: 

 ∫ −=
x

0

2
cgm xdD̂2)xx(C α& . (5) 

Moment coefficient slope due to transverse angular velocity: 

 [ ]∫ −−−=
x

0

2
cgcgqm xdD̂2)xx(

xd
d)xx(C . (6) 

It should be noted that since the upper limit of integration in equations 1–6 is the local axial 
distance from the nose, the integrated aerodynamic coefficients represent the accumulated force 
or moment from the nose to local axial position on the body.  By substituting the total body 
length as the upper limit of integration allows the aerodynamic coefficients to be evaluated for 
the complete body.  Thus, these integrals allow both the global aerodynamic coefficients and 
their distribution along the body to be determined. 

The pitch-damping moment coefficient sum α&mqm CC + is of considerable practical importance 

in assessing stability and is easily determined from the sum of equations 5 and 6. 
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 2
cg

2
mqm )xx(D̂2CC −−=+ α& . (7) 

The slender body theory allows all of the aerodynamic coefficients of interest to be related to the 
local cross-sectional area of the body as previously seen.  Because the aerodynamic coefficients 
are related to a local property of the body, the theory cannot account for such known effects as 
“carry-over lift,” which is produced in a transition region downstream of the junction between 
the nose and the cylinder.  As a consequence, the normal force coefficient predicted by the 
slender body theory is known to be incorrect except where the body diameter is rapidly 
changing.  Exactly the same slender body formulas can be obtained from a more sophisticated 
analysis such as that of Bryson (14).  These relations can also be found in the standard reference 
by Nielsen (15).  Bryson’s analysis is a general application of the apparent additional mass 
concept to bodies of more general cross-sectional geometries. 

Figure 2 shows comparisons of the slender body and PNS predictions of the normal force 
coefficient slope for the ANSR.  This figure reveals several important and well-known 
characteristics of slender body theory.  First, on the nose of the body where the body diameter is 
changing, slender body theory predicts the normal force fairly well.  However, slender body 
theory fails to predict the carry-over lift on the cylinder behind the nose.  The carry-over lift is 
significant as it accounts for more than 30% of the normal force.  The normal force coefficient 
also exhibits a Mach number dependence not found in the slender body theory.  Since the normal 
force is independent of the center of gravity location, the same data applies to shorter bodies 
truncated at any appropriate length.  

Similar comparisons are obtained when the slender body theory results for the pitch-damping 
force coefficients are compared with PNS predictions as shown in Figure 3.  Again, the pitch-
damping force coefficients are relatively well predicted on the nose, but a significant difference 
is again seen on the cylinder behind the nose.  For both the normal force and pitch-damping force 
coefficients, slender body theory only provides a qualitative prediction of the force distributions 
though the error is likely greater than that desired for many preliminary design applications. 

1.2 Relationships Between Coefficients 

One of the implications of the application of slender body theory is that many of the 
aerodynamic coefficients appear to be related to one another.  In particular, equation 1 provides a 
direct algebraic relationship between 

αNC  and D̂ .  Because of this relationship, all of the 

coefficients previously shown can be related to αNC in some manner.   

If this view is applied to the pitching moment coefficient, the following is obtained: 

 ∫ −=
x

0

N
cgm xd

xd
Cd

)xx(C α
α . (8) 
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Figure 2.  Comparison of predicted normal force coefficient slope αNC  distribution with slender body 

theory for the ANSR. 
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Figure 3.  Comparison of PNS and slender body theory predictions of pitch-damping force coefficients 

over body, ANSR, Mach 2.5, Xcg/D = 5.038. 
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This relationship is just the definition of the moment in terms of the distribution of forces written 
in coefficient form.  This suggests that the slender body equations can be used to derive 
relationships between variables even though the slender body equations in terms of the body 
geometry are inaccurate.  (It should be noted that this form of the pitching moment includes only 
the contribution from the normal force and ignores the small contribution from the asymmetrical 
longitudinal forces acting on the nose.  This contribution can be shown to produce a small 
restoring moment.  In the results presented here, the computed values of αmC  from the more 

elaborate CFD computation that includes this additional contribution have been used, rather than 
the value of αmC  from equation 8.) 

Similarly, the pitch-damping force coefficient α&NC  becomes 

 ∫=
x

0
NN xdCC αα& . (9) 

In this form, the pitch-damping force coefficient α&NC  is related to the area under the normal 

force coefficient curve rather than twice the volume of the body according to slender body 
theory.  This will be shown to be inaccurate, but forms a starting point for an approximation.  
The pitch-damping force coefficient qNC  can be obtained by differentiating the integrand of  

equation 4 by parts, i.e., 

 ∫∫ −−=
x

0

2

cg

x

0

2
qN xd

xd
D̂2d)xx(xdD̂2C . (10) 

Both terms of equation 10 can be replaced by the corresponding slender body coefficients,  

 αα mNqN CCC −=
&

. (11) 

Equation 11 was derived by Sacks (16) using the Blasius method of calculating the forces and 
moments on a slender body from the cross-flow potential.  This result might have been more 
useful if he had not used the integrated form of the equation for qNC  (equation 4) which gives 

rather poor results.  Equation 11 is also somewhat remarkable because it shows that the two 
dynamic derivatives qNC and 

α&NC  are related to each other and the difference between the two 

coefficients is the pitching moment slope 
αmC  which is a static aerodynamic coefficient.  It is 

also important to note that the derivation of equation 11 presented here applies only to 
axisymmetric bodies, though it is possible to show that this relationship holds for bodies with 
more general cross sections (14, 16).
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The pitch-damping moment coefficient becomes 

 ∫ −=∫ −=
x

0
Ncg

x

0

N
cgm xdC)xx(xd

xd
Cd

)xx(C α
α

α
&

&
. (12) 

This form is in direct analogy with the pitching moment and normal force relationship.   

The integrand of the damping moment due to transverse angular rate in equation 6 can also be 
expanded into two parts, which can be identified as follows: 

 αα m2mqm CCC −=
&

. (13) 

The static pitching second moment slope αm2C  represents an additional term defined as 

 ∫ −=
x

0

N2
cgm2 xd

xd
Cd

)xx(C α
α . (14) 

The relationship shown in equation 13 is analogous to the form for the force coefficients shown 
in equation 11.  The damping moment qmC  can also be expressed as a function of qNC in a 

manner analogous to the damping moment α&mC : 

 ∫ −=
x

0

qN
cgqm xd

xd

Cd
)xx(C . (15) 

Finally, the sum of the pitch-damping moment coefficients becomes 

 2
cgNmqm )xx(CCC −−=+ αα& . (16) 

 
Note that all the coefficient relationships (equations 8, 9, and 11–13) are consistent with the 
translation of the center of gravity relations, as are the slender body theory equations. 

In this form, all the aerodynamic coefficients of interest are related in some manner to the normal 
force distribution rather than the local cross-sectional area of the body.  Part of the motivation for 
casting the aerodynamic coefficients in this form is that it may be possible to overcome some of 
the shortcomings of slender body theory, such as the lack of history effects, because some of the 
history effects are already contained in the normal force distribution.  Second, the normal force 
distribution is readily obtainable from current fast design approaches such as AP98 (7) and 
DATCOM (8).  Thus, a method for predicting the pitch-damping coefficients based on the 
normal force distribution can be easily used in conjunction with existing fast design methods 
eliminating the need to correlate the normal force distribution itself.
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Figure 4 shows a comparison of the pitch-damping force coefficient α&NC computed using 

equation 9 with the CFD predictions of α&NC .  In applying equation 9, the predicted normal 

force distribution from CFD was used.  The application of equation 9 appears to overestimate 
α&NC  by about 60% compared with the CFD predictions.  However, the distribution of the 

force along the body is similar for both results. 
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Figure 4.  Comparison of pitch-damping force coefficient α&NC with integral of normal force 

coefficient over body, Mach 2.5, ANSR, CFD predictions. 

Figure 5 shows a comparison of the pitch-damping force coefficient qNC computed using 

Sacks’s relation (equation 11) with the CFD predictions of qNC .  The pitch-damping coefficient 

distribution required in equation 11 was obtained from CFD.  Over the nose region, equation 11 
yields an accurate prediction of qNC , though the accuracy is degraded somewhat over the rear of 

the body.  Equation 11 does provide enhanced accuracy compared with the direction application 
of slender body theory shown in Figure 3.  (Weinacht and Danberg [17] provide a more complete 
discussion of the relative accuracy of Sacks’s relation.) 

The results shown in Figures 4 and 5 demonstrate that casting the original slender body theory 
results in terms of the normal force coefficient does allow some improvement in the predictive 
capability.  However, further effort is required to establish a predictive capability using these 
relations with sufficient accuracy for design applications.
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Figure 5.  Comparison between qNC  and 
αα mN CC −

&
(equation 11), Mach 2.5, ANSR, Xcg/D = 5.038,  

CFD predictions. 

2. Formulation of an Approximate Model 

The critical element in the evaluation of the pitch-damping coefficients is the approximation of 
α&NC .  As can be seen from equations 11, 12, and 15, once α&NC  is determined, the damping 

coefficients qNC , α&mC , and qmC can be determined using these equations.  The relationship 

given by equation 9 overestimates α&NC  by about 60% at 9 calibers as is shown in Figure 4.  

Both curves, however, are similar in general form.  A function, G(x), is introduced into equation 
9 multiplying αNC  to correct for this discrepancy.   

 ∫=
x

0
NN xdC)x(GC αα& , (17) 

or alternatively, the function G(x) is defined: 

 
dx
Cd

C
1)x(G N

N

α

α

&= . (18)
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By applying equation 12, the pitch-damping moment coefficient α&mC  can be expressed in terms 

of the function G(x). 

 ∫∫ −=−=
x

0
Ncg

x

0

N
cgm xdC)x(G)xx(xd

xd
Cd

)xx(C α
α

α
&

&
. (19) 

The function G(x) can be evaluated from CFD derived values of αNC  and α&NC using equation 18.   

Figure 6 shows G(x) for the ANSR in the Mach number range from 1.8 to 4.5.  Two distinct regions 
are seen in Figure 6 corresponding to the ogival nose (0 < x < 2) and cylindrical afterbody (x > 2).   
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Figure 6.  G(x) over the ANSR for various Mach numbers. 

On the nose, G(x) is relatively small except near the nose tip.  The large values of G(x) very 
close to the nose tip are believed to be caused by numerical start-up transients associated with the 
conical starting procedure used in the PNS approach.  These transients have little effect on the 
computed coefficients because both αNC  and α&NC  go to zero very rapidly on the nose as the tip 

is approached.  Because α&NC  is so small on the nose, the characterization of G(x) for the nose 

region is somewhat less important than for the cylindrical afterbody.   

2.1 G(x) on Cylinder (Carry-Over Transformation) 

Compared to the nose region, the more significant variation in G(x) occurs in the carry-over 
region after the nose as is shown in Figure 6.  Rather than attempt to develop an analytic function 
to describe G(x) in terms of Mach number and x, the possibility of defining a coordinate 
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transformation to relate at least a part of G(x,M) to a single function, e.g., G25 = G(X25,M = 2.5), 
is considered. 

Figure 6 suggests that, for 2x >  but before G(x) reaches a maximum, G(x) is nearly linear with 
x.  In this region, G(x) can be approximated as a linear function for each Mach number, as shown 
in Figure 7.  Furthermore, each curve appears to intersect at a common point, G(0) = G(x = 0).  
This suggests G(x) can be represented in the form shown in equation 20: 

 )0(G)]0(G)X(G)[M(T)M,x(G 25 +−= , (20) 

where, in the linear region, 

 x
)M(T
)M(SX25 = ; (21) 

 

linear25

25

linear

Xd
Gd
dx
dG

)M(S


















= . (22) 
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Figure 7.  Correlation of G(x) on the cylindrical afterbody, ANSR. 
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On the cylindrical body, G25 is obtained from a table look-up and interpolation based on the 
transformation of x given by equation 21.  An abbreviation of the reference data is given in Table 
1.  Local values of G are obtained from equation 20 where G(0) = !0.331. 

Table 1.  G25 as a function of X25. 

X25 G25(X25) 
0. −0.331 
1. −0.127 
2. 0.076 
3. 0.281 
4. 0.486 
5. 0.674 
6. 0.796 
7. 0.842 
8. 0.835 
9. 0.799 

10. 0.763 
11. 0.730 
12. 0.703 
13. 0.680 
14. 0.658 
15. 0.636 
16. 0.615 
17. 0.595 
18. 0.576 
19. 0.558 
20. 0.543 

 
The similarity factor T accounts for the decrease in the maximum G(x) with Mach number.  The 
x coordinate transformation factor S is equal to the ratio of the slopes of the linear regions.  
Based on the PNS data for the ANSR, the curve fits were obtained for the S(M) and T(M) and 
are shown in equations 23 and 24.  The variation of the factors S(M) and T(M) with Mach 
number is also shown in Figure 8. 

 2M
10718.0

M
1302.20688.0)M(S ++= . (23) 

 2M
1510.0

M
1176.1615.0)M(T −+= . (24) 

Figure 9 shows the resulting transformation of the G(x) distributions of Figure 6.  The data in the 
carry-over region are very well represented by a single curve, although there is some divergence 
in the different Mach number curves beyond the peak in the data.  Thus, some error in the final 
results for large L/Dref bodies must be accepted. 
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Figure 8.  Similarity factors S(M) and T(M). 
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Figure 9.  Correlation of G25(X25) with computed data, ANSR. 
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2.2 Effect of Nose Length 

The previous analysis has considered only a fixed nose length of 2 calibers.  When nose length is 
varied, changes in the distribution of G(x) become apparent.  Figure 10 shows the distribution of 
G(x) for a tangent-ogive/cylinder configuration with nose lengths of 2, 4, 6, and 8 calibers at 
Mach 2.5.  While the shape of the curves behind the nose/cylinder junction remain relatively the 
same, the curve shift upwards and to the right with increasing nose length.  The shift of the curve 
to the right with increasing nose length might be expected because of the shift in the location of 
the nose/cylinder junction.  The upward shift in G(x) is perhaps less intuitive.  To account for the 
shift in the curve with increasing nose length, the following correction was added to the original 
correlation previously shown.   

 )0(G2
D

L
0183.0)0(G)X(G)M(T)M,x(G nose

2525 +














 −+−= ; (25) 

 













 −−= 2

D
L

5833.0x
)M(T
)M(SX nose

25 . (26) 

When the L/D ratio of the nose Lnose/D approaches 2, the correlation reverts to the original form. 
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Figure 10.  Effect of nose length on G(x), tangent-ogive/cylinder, Mach 2.5. 
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2.3 Correlation for the Nose Region 

In the previous discussion, it was pointed out that the nose region has a relatively small effect on 
the overall prediction of α&NC .  However, to complete the correlation, a suitable evaluation of 

G(x) for the nose region must be performed.  In the course of developing and testing the 
correlation, it was found that the slope of the nose had a significant effect on the G(x) on the 
nose, but a much less apparent effect on the carry-over region on the cylinder.  To investigate 
this further, a parametric series of CFD computations for various conical bodies with cone angles 
from 2° to 28° was performed.  In each case, the cone length was sufficient to establish many 
calibers of constant or near constant G(x) following the tip region transient.  Figure 11 shows the 
results as a function of both the cone angle, Cθ , and Mach number.  The initial trend of G(nose) 
decreasing with Mach number at small values of cone angle is reversed at larger cone angles 
beginning after 8°.  Using a curve-fitting procedure, a closed-form expression for G(nose) for the 
conical noses has been obtained.  This allows a straight-forward evaluation of G(nose) for the 
conical noses in terms of the Mach number and the cone half-angle Cθ  in degrees.  The values of 
the coefficients mi and bi are listed in Table 2. 

 i
5i

0i
i

5i

0i

i
i bmM)nose(G θθ ∑∑

=

=

=

=

+= . (27) 

For conical bodies, the correlation function G(nose) yields a very accurate evaluation of α&NC .   
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Figure 11.  Variation of G(nose) with Mach number and cone angle for conical noses. 
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Table 2.  Coefficients of the fifth-order polynomial fit of 
equation 27. 

i bi mi 
0 1.06724 −0.0137712 
1   9.73099 H 10−2 −6.22894 H 10−2 
2 −2.92027 H 10−2     9.7226 H 10−3 
3   2.13167 H 10−3 −5.82041 H 10−4 
4 −6.54121 H 10−5   1.59364 H 10−5 
5   7.34183 H 10−7 −1.64649 H 10−7 

 
This is due, in part, to the fact that G(x) for the conical nose is independent of the location along 
the nose and is a simple function of Mach number and cone angle.  For other nose types, such as 
ogival noses, G(x) appears to vary along the nose (Figures 6 and 10).  However, it was found that 
a suitable approximation for G(x) on an ogive nose could be obtained by using the G(nose) for a 
conical nose whose nose tip angle was equal to the slope at the tip of the ogive.  For a tangent 
ogive nose, it can be shown that the local slope at the tip of the nose is equal to twice the cone 
angle for a conical nose of equivalent length.  Thus, typically slopes for ogive noses are about 
20° and G(nose) is relatively small. 

2.4 Pitch Damping Force, qNC  (Sacks’s Relationship) 

The pitch damping force due to the transverse angular rate qNC  can be evaluated in terms of 

α&NC  and the static moment coefficient, αmC , from the relation derived by Sacks (i.e., equation 

11).  The PNS data provides the first accurate test of equation 11 using higher level models. The 
following residual, H, is computed for the L/D = 20 ANSR case:  

 qNmN CCC)x(H −−= αα& , (28) 

and this is shown in Figure 12.  For the first 4–5 calibers, the residual is negligible, but for long 
bodies, the error in equation 11 becomes more important.  The difference, H, can be 

approximated easily as straight lines of slope, 35.0
dx
dH

= .  The intercept on the axis, xH, of these 

lines is found to be proportional to the same x transformation factor as in the function G(x), i.e., 
xH = 4.35S(M)/T(M), where 4.35 is the intercept for the Mach number 2.5 case.  The effect of 
nose length was investigated for H(x).  Although some effect of nose length was apparent, the 
effect was less than the variability in the approximation previously described.  Thus, no 
correction for nose length was applied. 

The pitch-damping force and moment coefficients qNC  and qmC  can be computed by 

appropriately adding the correction H(x) to equations 11 and 13. 

 )x(HCCC mNqN −−= αα& . (29)
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Figure 12.  Distribution of H(x) along body for ANSR. 

 

 xd
xd

dH)xx(CCC
x

Hx
cgm2mqm ∫ −−−= αα& . (30) 

It should be noted that the correction term H(x) is added to improve the correlation, although it is 
relatively small.  Direct application of equations 11 and 13 provides reasonable estimates of the 
coefficients qNC  and qmC .  (Weinacht and Danberg [17] further discuss direct application of 

these relations.) 

Figures 13 and 14 show the results of applying the approximate method to the L/D = 9 ANSR 
configuration at Mach 2.5.  The comparisons with the PNS results are very good with errors less 
than 3%.  The approximate method is effective in substantially reducing the errors that result 
from applying slender body theory.  The results are typical of those that are obtained using the 
approximate method for other configurations, although somewhat larger errors may be 
encountered. 

2.5 Pitch-Damping Moment Coefficient Sum 

The pitch-damping moment coefficient sum can be easily obtained by adding equations 19 and 
30.  However, the sum of these two equations can be recast into a form, shown in equation 31, 
that better illustrates the effect of the correlation terms.
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Figure 13.  Comparison of PNS and approximate method predictions of pitch-damping 
force coefficients over body, ANSR, Mach 2.5, Xcg/D = 5.038. 
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Figure 14.  Comparison of PNS and approximate method predictions of pitch-damping 
moment coefficients over body, ANSR, Mach 2.5, Xcg/D = 5.038. 
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 xd
xd
Hd)xx(xdC)xx)(G1(2C)xx(CC cg

x

Hx
N

x

0
cgN

2
cgmqm −−−−−−−=+ ∫∫ ααα& . (31) 

 
The first term on the right-hand side is the slender body theory result using the normal force 
coefficient slope (equation 16).  Note that in either form of the slender body theory (equations 7 
or 16), the pitch-damping moment coefficient goes to zero at the center of gravity.  The second 
term of equation 31 takes into account upstream effects and it is this term that prevents the 
moment sum from going to zero at the center of gravity.  This is illustrated with Figure 15, which 
presented results for the 9-caliber ANSR.  The large difference between the slender body theory 
and the PNS results are most significant around the center of gravity.  Note also that the 
integrand of the second term of equation 31 changes sign at the center of gravity.  By 
appropriately locating the center of gravity, this integral can be made to cancel out for a given 
body producing apparently good (though fortuitous) predictions of the pitch-damping coefficient 
sum using slender body theory for some center of gravity locations.  The last integral term 
accounts for the discrepancy in Sacks’s relationships (equations 11 and 13), and its contribution 
is typically smaller than the second term.  Although equation 31 is more complicated than 
slender body theory, it does account for the effect of the force carry-over from the nose onto the 
cylindrical afterbody that is necessary to produce an accurate evaluation of the pitch-damping 
moment coefficient sum. 

2.6 Reynolds Number Effects 

The effect of the Reynolds number on the correlation parameters was also considered during the 
course of the study because of its possible effect on the carry-over lift.  The ANSR configuration 
was used as the reference configuration for the study.  For the results presented here, all the 
Navier-Stokes results are computed at standard sea level conditions.  As a consequence, the 
actual Reynolds number, for each geometry, varies linearly with Mach number.  In the 
investigation of Reynolds number effects, the Reynolds number was changed by constant factors 
(Rer = 0.5, 2, 5, 10) holding the flight velocity and Mach number unchanged.  This can be 
interpreted as a variation in the reference diameter from 10 to 200 mm for the ANSR, which has 
a nominal diameter of 20 mm.  The magnitude of the Reynolds number = 454,000MRer.  The 
results show some variation near the maximum in the carry-over region of the G curve but the 
magnitude of the effect on the pitch-damping moment coefficient was only between 2% and 4% 
and is not considered further.
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Figure 15.  Comparison of slender body theory, PNS, and approximate method predictions 
of pitch-damping moment coefficient sum over body, ANSR, Mach  
2.5, Xcg/D = 5.038. 

3. Application of the Approximate Model 

The accuracy of the approximate model was assessed by comparison with both experimental data 
and computational predictions.  An important element in the experimental comparisons is the 
accuracy of the approximate method relative to the typical experimental error from range 
experiments.  Due to the limited experimental data available, the computational predictions were 
utilized to perform a more complete evaluation of the model for a variety of geometries and 
flight conditions not available in the current experimental database.  Errors were quantified in 
terms of the individual error ∆  for each one-to-one comparison and the overall root mean square 
(rms) deviation, σ, for complete datasets containing N individual comparisons. 
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The experimental database for the ANSR rocket is probably the highest quality experimental 
database for evaluating the pitch-damping predictions for axisymmetric flight bodies.  The 
database includes three different body lengths; 5-, 7-, and 9-caliber bodies; with three center of 
gravity locations for each body length at Mach 1.3, 1.8, and 2.5.  Figure 16 shows a comparison 
of the predicted pitch-damping moment coefficient sum using the approximate model with the 
experimental database.  In general, no consistent bias in the predicted data is observed.  The rms 
derivation, σ, is 18% for the complete dataset; however, this error includes the variability in the 
experimental data.  The experimental variability is evident because multiple firings were 
performed for the same geometry and flight conditions and multivalued data were obtained for 
the same flight conditions.  Figure 17 shows the comparisons between the approximate model 
with CFD predictions.  The approximate model appears to show a small consistent 
overprediction of the pitch-damping moment coefficient sum for this dataset.  Here, the rms 
derivation, σ, is 11% and is perhaps better representative of the overall accuracy of the model.  
This overprediction is not evident in the comparisons with experimental data due to the 
experimental uncertainty. 
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Figure 16.  Correlation between approximate method predictions and experimental 

data for α&mqm CC + , ANSR, L/D = 5, 7, and 9, and Mach 1.3, 1.8,  

and 2.5. 
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Figure 17.  Correlation between approximate method predictions and CFD 

computations for α&mqm CC + , ANSR, L/D = 5, 7, and 9, and 

Mach 1.3, 1.8, and 2.5. 

The accuracy of the approximate model was also evaluated by comparing the results of the 
model with CFD predictions of the pitch-damping moment coefficient sum for a series of tangent 
ogive/cylinder and cone/cylinder body geometries.  In this study, a variety of nose lengths were 
considered:  2, 2.5, 3, 4, 5, 6, and 8 calibers and body lengths from 5 to 20 calibers.  All bodies 
had at least 1 caliber of cylindrical afterbody.  Thus, not all nose lengths were considered for 
bodies less than 9 calibers in length.  Mach numbers of 2, 3, 4, and 5 were also considered.  For 
each body length, a fixed center of gravity location for each body length was used as shown in 
Table 3.  Realistically, the center of gravity location should be expected to move rearward for 
larger nose lengths for monolithic bodies, although fixing the nose length at a specified location 
does allow the aerodynamic effects to be isolated from the effects produced by center of gravity 
shift. 

Figures 18 and 19 compare the results of the application of the approximate method with the 
CFD predictions for the tangent ogive cylinder and cone cylinder bodies for the pitch-damping 
moment sum, qmC  + α&mC .  In general, the results of applying the approximate method compare 

well with the CFD predictions with relatively little bias in the results across the range of 
parameters tested.   

For the tangent ogive cylinder body, the maximum error between the approximate method and 
the CFD predictions was 25% with an overall rms deviation, σ, of 9%.  For the cone cylinder  
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Table 3.  Center of gravity locations 
as a function of body length. 

L/D Xcg/D 
  5. 3.0 
  7. 4.037 
  9. 5.038 
12. 6.565 
15. 8.063 
20. 10.565 
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Figure 18.  Correlation between approximate method predictions and CFD 
computations for α&mqm CC + , cone cylinder and tangent ogive 

cylinder bodies, L/D = 5, 7, and 9. 

body, the maximum error between the approximate method and the CFD predictions was 21% 
with an overall rms deviation, σ, of 7%.  In general, the largest errors were encountered for the 
smaller L/D bodies. 

The comparisons were also made for the individual pitch-damping coefficients α&mC  and 

qmC and are shown in Figures 20–23.  The comparisons for the pitch-damping coefficient α&mC  

show a greater variability than for qmC .  As discussed previously, α&NC and α&mC are computed 

from the normal force distribution and the correlation function G(x) using equations 17 and 19.  
qNC and qmC  are then computed from equations 29 and 30 using the computed values of  
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Figure 19.  Correlation between approximate method predictions and CFD 

computations for α&mqm CC + , cone cylinder and tangent ogive 

cylinder bodies, L/D = 12, 15, and 20. 
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Figure 20.  Correlation between approximate method predictions and CFD 

computations for α&mC , cone cylinder and tangent ogive cylinder 

bodies, L/D = 5, 7, and 9. 
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Figure 21.  Correlation between approximate method predictions and CFD 

computations for α&mC , cone cylinder and tangent ogive cylinder 

bodies, L/D = 12, 15, and 20. 
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Figure 22.  Correlation between approximate method predictions and CFD 

computations for qmC , cone cylinder and tangent ogive cylinder 

bodies, L/D = 5, 7, and 9. 
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Figure 23.  Correlation between approximate method predictions and CFD 
computations for qmC , cone cylinder and tangent ogive cylinder bodies, 

L/D = 12, 15, and 20. 

α&NC and α&mC .  The variability shown in Figures 20 and 21 are a measure of the effectiveness of 

the correlation function G(x).  On the other hand, the reduced variability in Figures 22 and 23 
indicates that relatively less error is obtained by applying equations 29 and 30.  Most of the 
variability shown in Figures 22 and 23 results from the prediction of α&mC which is one of the 

inputs used in equation 30.  The additional terms in equations 29 and 30 appear to increase the 
magnitude of the coefficients without adding much additional error.  An additional implication of 
these comparisons is that the variability of  α&mqm CC +  should be greater than qmC  but less than 

α&mC  since the sum is obtained by adding  qmC  and α&mC . 

The results presented in Figures 18 and 19 give a global assessment of the effectiveness of the 
approximate method.  It is somewhat difficult from this data presentation to determine how well 
the model can be expected to perform when individual design variables are changed.  Figures 
24–27 show comparisons of the approximate method with CFD results for tangent ogive cylinder 
and cone cylinder bodies with a nose length of 2 calibers for Mach numbers between 2 and 5 and 
for body lengths of 5, 7, 9, 12, 15, and 20 calibers.  The dominant effect shown in this set of 
figures is the increase in α&mqm CC +  with increasing body length.  A weaker variation in 

α&mqm CC +  is observed with changing Mach number.  The variation in the Mach number effect 



 

 27

-80

-70

-60

-50

-40

-30

-20

-10

0
1 2 3 4 5 6

Mach Number

Pi
tc

h-
D

am
pi

ng
 M

om
en

t C
oe

ffi
ci

en
t S

um
 CFD

Approximate Method

L/D=9

L/D=7

L/D=5
Cone Cylinder

 
Figure 24.  Comparison of predicted Mach number variation of α&mqm CC +  

obtained from approximate method and CFD computations, cone cylinder 
bodies, Lnose/D = 2, L/D = 5, 7, and 9. 

-80

-70

-60

-50

-40

-30

-20

-10

0
1 2 3 4 5 6

Mach Number

Pi
tc

h-
D

am
pi

ng
 M

om
en

t C
oe

ffi
ci

en
t S

um
 CFD

Approximate Method

L/D=9

L/D=7

L/D=5
Tangent Ogive Cylinder

 
Figure 25.  Comparison of predicted Mach number variation of α&mqm CC +  obtained 

from approximate method and CFD computations, tangent ogive cylinder 
bodies, Lnose/D = 2, L/D = 5, 7, and 9. 
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Figure 26.  Comparison of predicted Mach number variation of α&mqm CC +  obtained 

from approximate method and CFD computations, cone cylinder bodies, 
Lnose/D = 2, L/D = 12, 15, and 20. 
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Figure 27.  Comparison of predicted Mach number variation of α&mqm CC +  obtained 

from approximate method and CFD computations, tangent ogive cylinder 
bodies, Lnose/D = 2, L/D = 12, 15, and 20. 
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with increasing body length is well predicted by the approximate method compared with the 
CFD results.  For the shorter body lengths, α&mqm CC + shows a decreasing trend with Mach 

number.  However, as the body length increases this trend is reversed.  For the nose and body 
lengths considered here, there is relatively little difference in the results between the two nose 
tips. 

The effect of nose length on the predicted pitch-damping moment coefficient sum is shown in 
Figures 28 and 29 for an L/D = 7 body for both the tangent ogive cylinder and cone cylinder 
bodies.  Both the approximate method and the CFD results show a similar decreasing trend of 

α&mqm CC + with increasing nose length.  The approximate method also correctly predicts the 

relative differences between the conical and tangent ogive noses.  Although some differences 
between the approximate method and the CFD results are apparent for the larger nose lengths, it 
should be noted that the 6-caliber nose is a rather extreme case because the cylindrical afterbody 
is only 1 caliber in length.  Not withstanding these differences, the approximate method appears 
to be capable of predicting the variation of α&mqm CC + with many of the design variables of 

interest. 
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Figure 28.  Comparison of predicted effect of nose length on α&mqm CC +  obtained from 

approximate method and CFD computations, tangent ogive cylinder bodies, 
L/D = 7.
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Figure 29.  Comparison of predicted effect of nose length on α&mqm CC +  obtained from 

approximate method and CFD computations, cone cylinder bodies, L/D = 7. 

4. Conclusion 

A semi-empirical method based on the slender body theory has been developed to predict the 
pitch-damping coefficients for axisymmetric projectile configurations.  The method is based 
heavily on the slender body theory and some of the relationships between the aerodynamic 
coefficients that can be derived from the theory.  Some slender body formulas are modified by 
the addition of correction factors that are derived from CFD predictions.   

The CFD results allow a detailed investigation of the distribution of the pitch-damping force and 
moment along the body.  The ability to accurately compute the distribution of these forces and 
moments provides information on how the body geometry (nose shape, carry-over region, center 
of gravity location, and overall length) produces the overall coefficients.  Such an investigation 
would be very difficult to perform with experimental methods.  The distribution also provides 
insight into reasons for the discrepancies observed in the slender body theory, which is an 
entirely local theory.  Specifically, the slender body theory neglects the region immediately 
downstream of the nose (the carry-over region), which can be described with an integral that 
depends on upstream events.  The validity of Sacks’s relationship αα mNqN CCC −=

&
 is 

demonstrated except at large L/D’s where a small correction is needed.
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A modification to the slender body pitch damping theory is proposed in which the damping force 
coefficient α&NC  is related to the integral of the normal force coefficient slope, αNC .  A new 

function, )M,x(G , is introduced to modify αNC  to accurately predict the damping coefficient. 

CFD results are used to determine the factor G on the nose and cylindrical afterbody of an 
axisymmetric projectile in the supersonic velocity regime.  Once α&NC  is determined, all the 

other damping force and moments can be directly calculated.  One of the contributions achieved 
by basing α&NC on αNC  and the factor G is to account for the carry-over of the nose normal force 

onto the cylinder.  G is significantly affected by Mach number and an approximate 
transformation technique is shown to give acceptable results at supersonic speeds.  In calculating 
the pitch damping coefficients, it is assumed that αNC  can be determined from an auxiliary 

method such as CFD or fast-design methods.   

The technique has been applied to several axisymmetric projectile configurations.  Comparisons 
have been made to the ANSR which is a family of secant ogive cylinder bodies of varying body 
length.  Comparisons of the technique are made with both experimental and CFD data for this 
configuration to assess the accuracy of the method.  To further assess the model, an extensive 
computational database was generated using CFD for a family of cone cylinder and tangent 
ogive cylinder bodies.  Parametric variations of the body length (5–20 calibers), nose length (2–8 
calibers) and Mach numbers (Mach 2–5) were performed to construct the database. 

The model is simple and could be easily integrated into existing fast-design methods where its 
performance should be acceptable for preliminary design purposes.  Extension of the modified 
slender body theory to bodies with fins or flares is currently being pursued.
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List of Abbreviations 

mC   Pitching moment coefficient, 
DSV

2
1

M

ref
2ρ

 

αmC   Pitching moment coefficient slope with respect to angle of attack, 
α∂

∂ mC  

αm2C   Static pitching second moment coefficient slope with respect to angle of attack 

α&mC    Pitch-damping moment coefficient slope, 






∂

∂

V
D

Cm

α&
 

qmC   Pitch-damping moment coefficient slope, 






∂

∂

V
Dq

Cm  

α&mqm CC +  Pitch-damping moment coefficient sum 

NC   Normal force coefficient,  
ref

2SV
2
1

F

ρ
 

αNC   Normal force coefficient slope with respect to angle of attack, 
α∂

∂ NC
 

α&NC    Pitch-damping force coefficient slope, 






∂

∂

V
D

CN

α&
 

qNC   Pitch-damping force slope, 






∂

∂

V
Dq

CN  

α&NqN CC +  Pitch-damping force coefficient sum 

D̂   Local body diameter normalized by reference diameter 

D   Reference diameter
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F   Force 

)x(G   Correlation function used in computing α&NC  

)x(H   Correlation function used in computing 
qNC  

D/L   Body length-to-diameter ratio 

D/Lnose  Nose length-to-reference diameter ratio 

M   Mach number 

M   Moment 

N   Number of data points used to compute overall root mean square (rms) deviation 

q   Transverse angular rate of body 

rRe   Ratio of Reynolds number to baseline Reynolds number 

refS   Reference area, 
4
DS

2

ref
π

=  

V  Reference velocity 

x   Axial coordinate normalized by reference diameter 

cgx   Axial location of center of gravity normalized by reference diameter 

x   Dummy variable of integration associated with axial coordinate x  

X   Dimensional axial coordinate normalized by reference diameter 

cgX   Dimensional axial location of center of gravity normalized by reference diameter 

Greek Symbols 

α   Angle of attack 

α&   Angular rate associated with angle of attack 

∆   Individual error 

ρ   Freestream density 

σ   Overall root mean square deviation 
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